Processor-efficient sparse matrix-vector multiplication
نویسندگان
چکیده
منابع مشابه
Efficient Sparse Matrix-Vector Multiplication on CUDA
The massive parallelism of graphics processing units (GPUs) offers tremendous performance in many high-performance computing applications. While dense linear algebra readily maps to such platforms, harnessing this potential for sparse matrix computations presents additional challenges. Given its role in iterative methods for solving sparse linear systems and eigenvalue problems, sparse matrix-v...
متن کاملEfficient Multicore Sparse Matrix-Vector Multiplication for Finite Element Electromagnetics on the Cell-BE processor
Multicore systems are rapidly becoming a dominant industry trend for accelerating electromagnetics computations, driving researchers to address parallel programming paradigms early in application development. We present a new sparse representation and a two level partitioning scheme for efficient sparse matrix-vector multiplication on multicore systems, and show results for a set of finite elem...
متن کاملGPU accelerated sparse matrix-vector multiplication and sparse matrix-transpose vector multiplication
Many high performance computing applications require computing both sparse matrix-vector product (SMVP) and sparse matrix-transpose vector product (SMTVP) for better overall performance. Under such a circumstance, it is critical to maintain a similarly high throughput for these two computing patterns with the underlying sparse matrix encoded in a single storage format. The compressed sparse blo...
متن کاملSparse Matrix-Vector Multiplication for Circuit Simulation
Sparse Matrix-Vector Multiplication (SpMV) plays an important role in numerical algorithm in circuit simulation. In this report, we utilize Message Passing Interface (MPI) to parallelize the SpMV. In addition, resulting from the circuit simulation matrix formulation, the circuit systems are often represented as unstructured, not evenly-distributed sparse matrices. Therefore, we automatically de...
متن کاملReconfigurable Sparse Matrix-Vector Multiplication on FPGAs
executing memory-intensive simulations, such as those required for sparse matrix-vector multiplication. This effect is due to the memory bottleneck that is encountered with large arrays that must be stored in dynamic RAM. An FPGA core designed for a target performance that does not unnecessarily exceed the memory imposed bottleneck can be distributed, along with multiple memory interfaces, into...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2004
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2003.06.009