Processor-efficient sparse matrix-vector multiplication

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Sparse Matrix-Vector Multiplication on CUDA

The massive parallelism of graphics processing units (GPUs) offers tremendous performance in many high-performance computing applications. While dense linear algebra readily maps to such platforms, harnessing this potential for sparse matrix computations presents additional challenges. Given its role in iterative methods for solving sparse linear systems and eigenvalue problems, sparse matrix-v...

متن کامل

Efficient Multicore Sparse Matrix-Vector Multiplication for Finite Element Electromagnetics on the Cell-BE processor

Multicore systems are rapidly becoming a dominant industry trend for accelerating electromagnetics computations, driving researchers to address parallel programming paradigms early in application development. We present a new sparse representation and a two level partitioning scheme for efficient sparse matrix-vector multiplication on multicore systems, and show results for a set of finite elem...

متن کامل

GPU accelerated sparse matrix-vector multiplication and sparse matrix-transpose vector multiplication

Many high performance computing applications require computing both sparse matrix-vector product (SMVP) and sparse matrix-transpose vector product (SMTVP) for better overall performance. Under such a circumstance, it is critical to maintain a similarly high throughput for these two computing patterns with the underlying sparse matrix encoded in a single storage format. The compressed sparse blo...

متن کامل

Sparse Matrix-Vector Multiplication for Circuit Simulation

Sparse Matrix-Vector Multiplication (SpMV) plays an important role in numerical algorithm in circuit simulation. In this report, we utilize Message Passing Interface (MPI) to parallelize the SpMV. In addition, resulting from the circuit simulation matrix formulation, the circuit systems are often represented as unstructured, not evenly-distributed sparse matrices. Therefore, we automatically de...

متن کامل

Reconfigurable Sparse Matrix-Vector Multiplication on FPGAs

executing memory-intensive simulations, such as those required for sparse matrix-vector multiplication. This effect is due to the memory bottleneck that is encountered with large arrays that must be stored in dynamic RAM. An FPGA core designed for a target performance that does not unnecessarily exceed the memory imposed bottleneck can be distributed, along with multiple memory interfaces, into...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2004

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2003.06.009